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Abstract—This paper studies the fixed-time tracking problem
for chained-form nonholonomic systems under matched external
disturbances. The proposed method is to construct a tracking
controller such that the tracking errors converge to zero for
any arbitrary initial tracking error at fixed-time. First of all, the
resulting tracking error dynamics is transformed into two second-
order coupled subsystems. Then, the two subsystem are studied
and fixed-time control laws are designed. An upper bound of the
settling time, which only depends on the controller parameters
is estimated regardless of the initial conditions. Finally, some
simulation results are given to show the effectiveness of the
proposed controller.

I. INTRODUCTION

Control of nonholonomic systems has been an active
research topic during the last decades due to its large number
of applications (mobile robots [1], bicycle [2], underactuated
ship [3], [4], mobile manipulator [5], hovercraft [6], etc).
Indeed, control of these systems presents significant challenges
due to the corresponding differential constraints [7], [8].
From the Brockett’s theorem [9], nonholonomic system
cannot be stabilized at an equilibrium point by pure smooth
(or even continuous) state feedback controller [10]. Works
on stabilization and trajectory tracking for such systems
have been mainly divided into two directions: smooth time
varying feedbacks [11], [12] and discontinuous controllers
[13]. An interesting transformation of mechanical systems
with nonholonomic constraints to chained-form systems was
discussed in [14].

An interesting research topic in the area of stabilization
and trajectory tracking is the convergence rate analysis.
Indeed, the convergence rate is a significant performance
index to evaluate the effectiveness of the control algorithms.
The aims is to obtain a fast convergence rate of the tracking
errors. Most of the existing researches in trajectory tracking
focus on asymptotic [15] or finite-time [16] convergence.
In [17], a recursive terminal sliding mode strategy was
proposed to solve the trajectory tracking problem for
disturbed chained-form nonholonomic systems in finite-time.
However, when the convergence is asymptotic, the tracking
errors converge to zero when time approaches to infinity.

When the convergence occurs in finite-time, the errors goes
to zero in a finite time which depends on the initial conditions.

Fixed-time stability was recently proposed to define
algorithms which guarantee that the settling time is upper
bounded regardless to the initial conditions [18]. Many results
were recently introduced to design fixed-time controllers and
observer for some classes of linear systems [19], [20]. The
fixed-time stabilization problem for nonholonomic systems
in chained form was firstly studied in [21]. Based on sliding
mode theory, a nonlinear switching controller was proposed
to ensure the fixed-time convergence. Motivated by this work,
we investigate the fixed-time trajectory tracking problem.
It should be noted that the extension of the work in [21]
to the trajectory tracking problem is not trivial due to the
nonholonomic constraint.

In this paper, we will consider the fixed-time trajectory
tracking problem for chained-form nonholonomic systems.
A switching controller, based on two stages, is designed to
track the desired trajectory in a prescribed time. It should
be noted that an explicit expression of the switching time
for the proposed controller is provided. Using the proposed
controller, an upper bound of the settling time is provided
regardless of initial conditions.

The paper is organized as follows. In Section 2, some
preliminaries on fixed-time stability are given. In Section
3, the trajectory tracking problem is formulated. In Section
4, the controller design which solves the trajectory tracking
problem is discussed for chained-form nonholonomic systems.
In Section 5, some simulations results are given to show the
effectiveness of the proposed controller.

II. RECALLS ON FIXED-TIME STABILITY

Let us consider system{
ẋ(t) = F(t,x(t))
x(0) = x0

(1)
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where x ∈ Rn is the state, F : R+×Rn → R
n is a nonlinear

function and F(t,0) = 0 for t > 0. The solution of (1) are
understood in the Filippov sense [22].

Definition 1: [23] The origin of system (1) is a globally
finite-time equilibrium if there is a function T : Rn→ R

+ such
that for all x0 ∈Rn, the solution x(t,x0) of system (1) is defined
and x(t,x0) ∈ Rn for t ∈ [0,T (x0)) and limt→T (x0) x(t,x0) = 0.
T (x0) is called the settling time function.

Definition 2: [18] The origin of system (1) is a globally
fixed-time equilibrium if it is globally finite-time stable and the
settling time function T (x0) is bounded by a positive number
Tmax > 0, i.e. T (x0)≤ Tmax, ∀x0 ∈ Rn

Lemma 1: [18] Assume that there exists a continuously
differentiable positive definite and radially unbounded function
V : Rn→ R

+ such that

V̇ (x)≤−αV p(x)−βV q(x) (2)

with α > 0, β > 0, 0 < p < 1 and q > 1. Then, the origin
of system (1) is globally fixed-time stable with settling time
estimate

T (x0)≤ Tmax =
1

α(1− p)
+

1
β (q−1)

(3)

Remark 1: [24] If p = 1− 1
µ

and q = 1+ 1
µ

with µ ≥ 1, the
settling time can be estimated by a less conservative bound:

T (x0)≤ Tmax =
πµ

2
√

αβ
(4)

III. PROBLEM STATEMENT

Consider the nonholonomic system in chained-form dynam-
ics

ẋ1(t) = x2(t)
ẋ2(t) = u1(t)+d1(t)
ẋ3(t) = x4(t)x2(t)
ẋ4(t) = u2(t)+d2(t)

(5)

where x = [x1,x2,x3,x4]
T ∈ R

4 (resp. u = [u1,u2]
T ∈ R

2)
is the state (resp. control input) of the chained-form
nonholonomic system, d = [d1,d2]

T ∈ R
2 represents the

unknown disturbances of the chained-form dynamics.

The dynamics of the desired trajectory is generated using
the following system:

ẋ1,d(t) = x2,d(t)
ẋ2,d(t) = u1,d(t)
ẋ3,d(t) = x4,d(t)x2,d(t)
ẋ4,d(t) = u2,d(t)

(6)

where xd = [x1,d ,x2,d ,x3,d ,x4,d ]
T ∈R4 (resp. ud = [u1,d ,u2,d ]

T ∈
R

2) is the state (resp. control input) of the desired trajectory.

Here, the control objective is to design a control law u
which makes the tracking errors become zero in a fixed time T
where disturbances are considered. It means that there exists
a constant T such that

limt→T ‖x(t)− xd(t)‖= 0
x(t) = xd(t), ∀t ≥ T (7)

In order to solve the fixed-time trajectory tracking problem,
the following assumptions are set.

Assumption 1: The unknown disturbance is bounded as
follows {

|d1(t)| ≤ dmax
1

|d2(t)| ≤ dmax
2

(8)

Assumption 2: It is assumed that the desired velocity u1,d is
differentiable and the desired trajectory satisfies the following
condition

x2,d 6= 0 (9)

Remark 2: Assumption 1 is not restrictive since the upper
bounds of perturbation can be obtained a priori for any
physical system. Assumption 2 restricts the desired trajectory.

IV. FIXED-TIME TRAJECTORY TRACKING CONTROLLER

In this section, a new fixed-time trajectory tracking
controller is proposed for chained-form nonholonomic
systems with external disturbances.

Let us define the tracking errors as

e(t) = x(t)− xd(t) (10)

with e = [e1,e2,e3,e4]
T ∈ R4. The tracking error dynamics

satisfy the following differential equations:

(Σ1)
ė1(t) = x2(t)− x2,d(t)
ė2(t) = u1(t)+d1(t)−u1,d(t)

(Σ2)
ė3(t) = x4(t)x2(t)− x4,d(t)x2,d(t)
ė4(t) = u2(t)+d2(t)−u2,d(t)

(11)

To simplify the controller design, dynamics (11) is divided
into two second-order coupled subsystems. To solve the fixed-
time trajectory tracking problem, two steps are defined:
• Stabilization of subsystem Σ1 in a fixed time Ts using

control u1,
• After t > Ts, stabilization of subsystem Σ2 in a fixed time

T using control u2.

To design the fixed-time consensus tracking algorithm for
the second-order subsystems, the following theorem is derived.



Theorem 1: Consider system (5) with the trajectory tracking
control law defined as:

u1 = u1,d +ϕ1
(
e1,e2

)
u2 =

{
1 ,∀t < Ts

u2,d−
e4u1,d
x2,d

+ 1
x2,d

ϕ2
(
e3,ζ4

)
,∀t ≥ Ts

(12)

with ζ4 = e4x2,d .
The sliding mode controllers are as follows:

ϕ1
(
e1,e2

)
= −α1+3β1e2

1+2d1,max
2 sign

(
s1
(
e1,e2

))
−bα2s1

(
e1,e2

)
+β2bs1

(
e1,e2

)
e3e 1

2

ϕ2
(
e3,ζ4

)
= −α1+3β1e2

3+2d2,max
2 sign

(
s2
(
e3,ζ4

))
−bα2s2

(
e3,ζ4

)
+β2bs2

(
e3,ζ4

)
e3e 1

2

(13)

with sliding surfaces

s1
(
e1,e2

)
= e2 + bbe2e2 +α1e1 +β1be1e3e

1
2

s2
(
e3,ζ4

)
= ζ4 + bbζ4e2 +α1e3 +β1be3e3e

1
2

(14)

The switching time is Ts =
2√
α2

+ 2√
β 2

+ 2
√

2√
α1

+ 2
√

2√
β 1

and

constants αi,β j (i = 1,2 j = 1,2) are positive.
Then, the origin of system (11) is globally fixed-time stable

with settling time can be given by:

T = 2Ts (15)

Hence, the fixed-time trajectory tracking problem is solved.

Proof. The proof is divided into two steps.
• Let us first consider the time interval t ∈ [0,Ts]. Using

controller (12), subsystem Σ1 becomes

ė1 = e2
ė2 = ϕ1

(
e1,e2

)
+d1(t)

(16)

Following [18], let us consider the Lyapunov function
candidate V1 = |s1|. Its upper right-hand Dini derivative
along the system trajectories is for s1 6= 0,

D∗V1 = ė2sign(s1)+
|e2|ė2sign(s1)+

α1+3β1e2
1

2 e2sign(s1)

bbe2e2 +α1e1 +β1be1e3e
1
2

= (ϕ1 +d1)sign(s1)

+
|e2|(ϕ1 +d1)sign(s1)+

α1+3β1e2
1

2 e2sign(s1)

bbe2e2 +α1e1 +β1be1e3e
1
2

Since

bα2s1 +β2bs1e3e
1
2 sign(s1) = (α2|s1|+β2|s1|3)

1
2

we have

ė2sign(s1) =−
α1 +3β1e2

1
2

− (α2|s1|+β2|s1|3)
1
2 − (d1,max−d1sign(s1))

for s1 6= 0. Hence, using Assumption 1,

D∗V1 ≤−(α2V1 +β2V 3
1 )

1
2 (17)

From Lemma 1, one can conclude that s1 = 0 for all
t ≥ Ts1 =

2√
α2

+ 2√
β 2

In sliding mode, i.e. s1 = 0, the dynamics become

ė1 =−
⌊

α1e1+β1be1e3
2

⌉ 1
2

Let us consider the Lyapunov function candidate V2 =
|e1|. Its upper right-hand Dini derivative along the system
trajectories is

D∗V2 =−(
α1

2
V2 +

β1

2
V 3

2 )
1
2 (18)

From Lemma 1, one can conclude that e1 = 0 for all
t ≥ Ts. One should note if e1 = 0 and s1 = 0, then e2 = 0.

• Let us now consider t > Ts. From previously, subsystem
Σ1 becomes

ė1 = e2 = 0
ė2 = u1 +d1−u1,d = 0

Hence, system Σ2 can be written as:

ė3 = e4x2,d
ė4 = u2 +d2−u2,d

(19)

Setting ζ4 = e4x2,d , system (19) can be expressed as:

ė3 = ζ4

ζ̇4 = (u2 +d2−u2,d)x2,d + e4u1,d
(20)

Using controller (12), system (20) becomes:

ė3 = ζ4

ζ̇4 = ϕ2 +d2x2,d
(21)

Using Assumption 1 and following the same procedure
as in the first step, one can conclude that the origin of
system (20) is globally fixed-time state with settling time
T given by Eq. (15). From Assumption 2, it is clear that
the origin of system (11) is globally fixed-time stable
with settling time T .

Remark 3: It should be highlighted that since the settling
time T is independent of the initial system conditions and can
be estimated a priori, global finite-time stability of the closed-
loop system is guaranteed (contrary to many existing works
which only guarantee semi-global finite-time stability)



V. SIMULATION RESULTS

In this section, some simulation results are provided to
verify the theoretical analysis.

We consider the nonholonomic system in chained-form (5)
where the perturbations are d1 = sin(20t) and d2 = 10cos(10t).
The desired trajectory is generated by (6) with xd(0) =
[0,2,0,0]T , u1,d(t) = 2+ sin(t) and u2,d(t) = 1. The control
objective is that system (5) follows its derived trajectory xd .
It is clear that Assumptions 1-2 are verified. The control
parameter are selected as: α1 = 20, α2 = 10, β1 = 20, β2 = 10
and Ts = 2.5s. For the simulation purpose, the initial conditions
of system (5) are set as: x(0) = [10,1,3,1]T . Using Theorem
1, the robust controller (12) solves the fixed-time trajectory
tracking problem with an estimation of the settling time
T = 4.5s. Figures 1-2 show that the origin of subsystem Σ1
is globally fixed-time stable with a settling time less than
Ts = 2.5s.

Fig. 1. Actual trajectory x1 and desired state trajectories x1,d .

Fig. 2. Actual trajectory x2 and desired state trajectories x2,d .

Figures 3-4 show that the origin of subsystem Σ2 is globally
fixed-time stable with a settling time less than T = 4.5s.

Figure 5 displays the tracking errors. It can be seen that the
trajectory tracking problem is solve in fixed-time.

Fig. 3. Actual trajectory x3 and desired state trajectories x3,d .

Fig. 4. Actual trajectory x4 and desired state trajectories x4,d .

Fig. 5. Tracking errors e

VI. CONCLUSION

In this paper, the fixed-time trajectory tracking problem for
chained-form nonholonomic systems has been considered. A
switching controller has been proposed to solve this problem.
An upper bound of the settling time, which only depends on
the controller parameters has been estimated regardless of the



initial conditions. Some simulation results have been given to
show the effectiveness of the proposed controller.
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